Effect of Filter Cake and Some Biocompounds on Growth and Yield of Manfalouty Pomegranate Trees Grown in Sandy Soil El-Bolok, T. Kh. Arid and Semi Arid Zones and Olive Res. Dept., Hort. Res. Inst., ARC, Giza.

ABSTRACT

This study was undertaken during 2013 & 2014 seasons on 12-year-old Manfalouty pomegranate trees (*Punica granatum* L.) grown in a private orchard situated at Arab-Elawamer region, Abnoub city, Assiut Governorate, Egypt under drip irrigation system and spaced 4 x 4 meters apart. The aim of this investigation was to examine the effect of using filter cake enriched with yeast and/or EM, as a partial alternative to mineral N fertilizers on growth and flowering aspects, tree nutritional status, yield, fruit splitting % and fruit quality of Manfalouty pomegranate trees grown in sandy soil. The obtained results indicated that, fertilizing trees with filter cake at 50 and 100% of N either alone or with EM and/ or yeast each at 0.2% was considerably effective in stimulating all growth aspects, leaf contents of pigments, N, P, K, Mg, Ca, Zn, Fe, Mn and Cu, number of flowers / tree, number of perfect flowers/tree, marketable yield (kg) and both physical and chemical characteristics of the fruits relative to the control. However, number of male flowers/tree, number of splitted fruits/ tree, fruit peel weight and thickness, total acidity % and total soluble tannins were remarkably reduced by using filter cake with/or without yeast and EM application. Hence, for promoting the remarkable yield and fruit quality which leading to get higher profit of Manfalouty pomegranate trees grown under sandy soil along with controlling fruit splitting, it is advised to use filter cake at 100% of the recommended N (300 g/tree /year) enriched with 0.2 % yeast and EM1 (2 kg from yeast and 2 L/EM/ton filter cake), four times starting from the first week of January at two months interval.

Keywords: Filter cake, yeast, EM, Manfalouty pomegranate, yield, fruit splitting, fruit quality

INTRODUCTION

Splitting and sunburn pomegranate fruits are considered serious problems facing growers under Egyptian conditions. These damaged fruits have less keeping quality, unfit for shipment and marketing and liable to rot. The main causes of these drawbacks are genetically factors, malnutrition, higher temperature and unfavorable climatic conditions (Sheets *et al.* 2014).

Filter cake (also known as filter mud or filter press) with properties of 6.85 pH; 1.68% N; 1.13% P; 0.31% K; 1.1% Ca; 0.40% Mg and 3.2% Si (Dee *et al.* 2002) is a waste produced during clarification of cane juice following milling. Lime is added to the heated juice and the suspended organic matter is then filtered in filter presses and collected as a solid cake. The filter cake contains substantial amounts of CaCO₃ and different nutrients.

At the time being, the use of bio- fertilizers, for fruit crops is one of the corrective techniques that should be followed for avoiding the diverse hazards induced by application of chemical fertilizers, synthetic phytohormones and pesticides. Bio-fertilizers are the most important factor for plant production and soil fertility as they improve the biological, physical and chemical properties of the soil. Biological fertilization plays an important role in stimulating sustainable agriculture (Kannaiyan, 2002).

Clean cultivation is greatly achieved by using EM and yeast (*Saccharomyces cerevisiae*). Yeast contains IAA and cytokinins, which effectively promote growth in plants and delay leaf aging. In addition, it contains 93 % dry matter, 44.4 % protein, 2.19 % arginine, 2.09 % glycine, 1.07 % histidine, 2.14 % isolysine, 3.19 % leucine, 3.23 % lysine, 0.70 % methionine, 0.50 % cystine, 1.18 % phenylalanine, 1.49 % tyrosine, 2.06 % threonine, 0.19 % treptophan and 2.32 % vitamin B. Also, it contains 7.5 -8.5 % N, 2-3 % fat, 8 - 9.5 % ash, 6 - 12 % nucleic acid and 45 - 51 % crude protein. Other constituents of yeast are glutathione, lecithin, enzymes and co-enzymes. Furthermore, yeast contains vitamin B (thiamin), B₆ (pyridoxine) and glycine (Abou-Zaid, 1984). Also, it is very essential for the synthesis of aminoleulinic acid (AA) and for the formation of protoporophrin, the precursor of chlorophyll. It aids in activating photosynthesis process through enhancing the release of carbon dioxide (NRP, 1977 and Barnett et al. 1990). Using effective microorganisms (EM) has beneficial effect in inoculating different cultures of microorganisms into soil, where they shift the microbiological equilibrium and create an environment that is favourable to the growth and health of plants. It is capable for enhancing N fixation, organic matter, nutrient and water uptake and root development, as well as for reducing soil pH that is responsible for increasing the availability of different nutrients (Higa, 1991 and Joo et al. 1999). Using EM and other bio-fertilizers besides organic fertilization resulted in an obvious promotion on growth, yield and fruit quality rather than non-application of them with these amendments.

Previous studies proved that, using yeast and EM were very effective in enhancing growth and flowering aspects, tree nutritional status, yield and fruit quality in different fruit crop species. {Ahmed (2001), Hosam El-Deen *et al.* (2001), Moustaffa and El-Hosseiny, (2001), Mostafa (2004), Badawi (2005), Mouftah (2007), Mohamed *et al.* (2008), and Abdalla (2014)} on yeast and {Abd-Rabou (2006), Mofeed (2009), Badran and Mohamed (2009), Ahmed (2011), Roshdy *et al.* (2011), Ibrahim (2012), Hassan (2014), Abdel–Aziz (2015) and Abd -El-Reheem, (2015)} on EM.

The purpose of this study was to examine the effect of filter cake enriched with and / or EM_1 , as a partial alternative to mineral N fertilizers on growth aspects, flowering criteria, yield, fruit splitting, sunburned fruits and fruit quality of Manfalouty pomegranate trees grown under Assuit governorate conditions.

MATERIALS AND METHODS

This investigation was carried out during 2013 and 2014 seasons on twenty seven uniform in vigor, 12-yearold Manfalouty pomegranate trees (*Punica granatum* L.) grown in a private orchard situated at Assuit district, Assiut Governorate, Egypt. The trees are planted at 4 x 4 meters apart. Drip irrigation system using well water was adopted. The texture of the tested soil is sandy. Analysis of the experimental soil was done according to the procedures outlined by Peach and Tracey (1968) and the data are shown in Table (1).

 Table 1. Analysis of the tested soil at the trial location.

Constituent	Values
Sand (%)	83.07
Silt (%)	10.22
Clay (%)	6.71
Texture	Sandy
pH (1: 2.5 extract)	7.69
EC (1:2.5 extract) (mmhos/cm/25°C)	1.69
OM (%)	0.09
$CaCO_3$ (%)	3.11
Total N (%)	0.009
Available P (Olsen method, ppm)	1.1
Available K (ammonium acetate , ppm)	46.5

The selected trees (27 trees) received regular horticultural management as recommended.

1-Experimental work:

This experiment included the following nine treatments:

- 1-100 % mineral N (300 g N/ tree/ year) via (896.09 g ammonium nitrate / tree).
- 2-100% filter cake (1.68 % N) via (17.86 kg/ tree).
- 3-50 % mineral N (448 g ammonium nitrate / tree) + 50% filter cake (8.93 kg/ tree).
- 4-100% filter cake (17.86 kg/ tree) + 0.2% EM (2.0 L/ ton).

5-100 % filter cake + 0.2 % yeast (2.0 kg/ ton).

6-100 % filter cake + 0.2 % EM + 0.2 % yeast.

7-50% filter cake (8.93 kg/ tree) + 0.2 % EM (2.00 L. /ton)

8-50% filter cake + 0.2% yeast (2.0 kg/ ton).

9-50% filter cake + 0.2 % EM + 0.2 % yeast.

Each treatment was replicated three times, one tree per each. Filter cake (1.68 % N) was added once just after winter pruning (the 3rd week of Jan.). Ammonium nitrate (33.5 % N) was added biweekly via fertigation system. Yeast was activated before application with the assistance of Egyptian treacle and warm water (4°C) for 30 minutes (Table 2). Fresh EM (effective microorganisms) one ml contains 0.6×10^8 microbial strains) and yeast were added at 0.2% each (2.0 kg of yeast and 2 L of EM for one ton of filter cake). A mixture of filter cake (Table, 3) with yeast or EM or with both was prepared by adding two kilograms of activated yeast or two liters of EM to one ton of filter cake and left the mixture for 45 days under higher levels of moisture for complete analysis. During fermentation and every 15 days the mixture was stirred and the stirring was repeated biweekly. The trees received four additions started on the first week of January and at two week intervals (1st week March, May and July).

The untreated trees were sprayed with water containing Triton B. This experiment was arranged in a complete randomized design (CRD) with nine treatments, each replicated three times, one tree per each (Snedecor and Cochran, 1980).

2- Data recorded:

1. Measurements of vegetative growth characteristics:

At growth cessation of each season (the last week of July), number of new shoots/tree was counted. Sixteen new shoots were chosen on four labeled branches (four shoots towards each side) for measuring shoot length (cm) and thickness (cm) and number of leaves/shoot. Leaf area

 $(cm)^2$ was calculated in the twenty mature leaves located at the base of the labeled shoots using the following equation reported by Ahmed and Morsy (1995). Leaf area $(cm^2) = 0.53$ (length x width) + 1.06

Table 2. Chemical analysis of the used yeast (According to NRP, 1977, Abou- Zaid, 1984 and Barnett *et*

Properties	Values
Amino acids (mg/1000 g dry weight)	-
Arginine	1 99
Histidine	2.63
Isoleucine	2.31
Leucine	3.09
Lycine	2.95
Methionine	0.72
Phenyl alanine	2.01
Threonine	2.09
Tryptophan	0.45
Valine	2.19
Glutanic acid	2.00
Serine	1.59
Asparatic acid	1.33
Cystine	0.23
Proline	1.53
Tyrosine	1.49
N %	7.3
Fat %	3.5
Ash %	6.7
Glucose %	13.33
Vitamins (mg/ 100g dry weight)	-
B ₁	3.23
B ₆	1.25
B_2	1.33
B ₁₂	0.15
Thiamine	2.71
Riboflavin	4.96
Enositol	0.26
Biotin	0.09
Nicotinic acid	39.88
Pantothenic acid	19.56
Folic acid	4.36

 Table 3. Mechanical and chemical analysis of the used filter cake.

Construction	Value
Density	40 kg/m
Moisture	31.9%
pH	7.42
ÊC	1.95 (m mhos/cm)
Total nitrogen	1.80 %
Organic matter	54.8 %
Organic Carbon	31.8 %
Ash	50 %
C/N ratio	17.70
Р	2.12 %
S	1.20%
K	3.20%
Ca	3.30 %
Mg	2.80 %
Fe (ppm)	3688
Mn (ppm)	430
Cu (ppm)	60
Zn (ppm)	49

2. Leaf pigments content:

Chlorophyll a & b (mg/g FW) were determined in the fresh leaf samples previously taken for calculating the leaf area according to the method explained by Von-Wettstein (1957) and Hiscox and Isralstam (1979). Total chlorophyll was calculated by summation of chlorophyll a and b (mg/g FW)

3. Leaf N, P, K, Mg, Ca, Zn, Fe, Mn and Cu content:

Fifty mature leaves, six-months age from nonfruiting shoots for each tree (according to Summer, 1985) were taken (at the 1st week of Sept.) for measuring of N, P, K, Mg and Ca (as %) (Peach and Tracey, 1968) as well as Zn, Fe, Mn, and Cu as (ppm) according to the procedures indicated by Cottenie *et al.* (1982).

4. Flowering and fruit setting characters:

During flowering (mid-March), number of flowers/tree, number of male and hermaphrodite (perfect) flowers/tree, sex ratio was calculated relative to total number of perfect flowers and number of flowers/shoot were determined every season.

5. Yield and marketable fruits /tree:

Harvesting was took place when red colour in most fruits reached about 75% (the 1st week of October during both seasons) according to Sheets *et al.* (2014). Total number of fruits/tree, splitted and sunburned fruits and number of marketable fruits/tree were counted. Gross yield/ tree and marketable yield (kg.)/tree were recorded.

6 Fruit quality:

1. Physical properties:

Five fruits from each tree were randomly selected and transported to the laboratory for determination of fruit weight (g) and dimensions (height and diameter in cm.), fruit peel weight (%) and thickness (cm.), juice %, fruit pomace % and edible to non – edible portions.

2. Chemical properties:

TSS %, total reducing and non reducing sugars %(Lane and Eynon, 1965), total soluble tannins %, total acidity % (as g citric acid / 100 ml juice) (AOAC, 1995) and total anthocyanins (mg/100 g FW) in the fruits peels and juice were recorded (Fulcki and Francis, 1968).

7. Economic evaluation:

Economic evaluation was calculated according to Heady and Dillon (1961) as follows:

- Cost of fertilizing with filter cake/Feddan = number of trees (262) × amount of filter cake /tree (20 kg) × price of filter cake (400 L. E/ ton) = 2160 I.E
- Total cost of filter cake /Feddan = number of trees \times amount of filter cake /tree \times price = 270 I.E
- Total cost of yeast /Feddan = = 54 I.E
- Total cost of EM /Feddan = = 27 I.E
- Total cost of half amount of filter cake /Fadden = = 135 I.E
- Fixed expenses = (mineral fertilization, labor, pesticides and others) = 2300 L.E
- Total cost = sum of all costs.
- Total gross income = average of marketable yield of two seasons (kg)/Feddan × total price (3.5 L.E)
- Gross margin = total gross income total cost

3- Statistical analysis:-

The experimental data were tabulated and statistically analyzed according to the method described by Snedecor and Cochran (1980) and the differences between mean various treatments were compared by using Duncan Multiple Range Test at 5% level of probability (Duncan, 1955).

RESULTS AND DISCUSSION

1- Vegetative growth characteristics:

Data in Table 4 clearly show that, supplying the trees with N (300 g N/ tree/year) via 50 to 100% filter cake either alone or with yeast and/or EM each at 0.2% improved the five growth traits; namely number of new shoots/ tree, length and thickness of shoot (cm), number of leaves/shoot and leaf area (cm²) relative to using 100% mineral N. Using filter cake at 50 to 100% of N in combined with yeast and/or EM1 significantly enhanced these aspects. Using filter cake with yeast or EM preferable than using filter cake alone at 100%. Using filter mud at 100% of N with each EM and yeast was significantly superior than using filter cake at 50% with ether of them. Using yeast and EM with filter cake was better than using each alone. Using 50% mineral N + 50 % filter cake was significantly effective than using all N management treatments except for the application of 100% filter cake + yeast + EM each at 0.2%. The maximum values of growth characteristics were recorded on the trees received four additions of filter cake at 100% of N + yeast + EM each at 0.2% (2 kg/ton yeast or 2 l/ton EM). The treatments included 50% mineral N + 50% filter cake occupied the second position in this respect. The lowest values were recorded on the trees that received N as 100% inorganic N. These results were true during both seasons.

2- Leaf chemical compounds:

It is clear from the data in Tables 5 & 6 that, fertilizing Manfalouty pomegranate trees with N through 50 to 100% filter cake either alone or with 50% mineral N, yeast and EM each at 0.2% significantly enhanced chlorophyll a & b, total chlorophylls, total carotenoids, N, P, K, Mg, Ca, Zu, Fe, Mn and Cu in the leaves of treated trees relative to the application of N in the mineral form. Increasing percentages of filter cake from 50 to 100% caused a significant promotion on all leaf pigments and nutrients. Using any one of the two bio-compounds (yeast or EM) with filter cake was significantly more effective than using filter cake alone at 100% in enhancing these chemical components. Enriching filter cake with EM significantly gave better results than the application of yeast with filter mud in this respect. Combined application of yeast and EM₁ with filter cake recorded the utmost high means of these chemical constituents than the individual using of yeast or EM. Using 100% filter cake was significantly superior than using N as 100 % mineral N in this connection. Treating the trees with N as 100% filter cake + 0.2 % yeast + 0.2 % EM₁ gave the maximum values at all. The second rank in this respect was attained by the application of N as 50% filter cake + 50% mineral N. The lowest values were recorded on the trees that received N as 100% mineral N. Similar results were announced during both seasons.

3- Flowering aspects:

It is worth to mention from the data in Table 7 that, number of flowers/tree, number of male and perfect flowers/ tree and number of flowers/shoot were significantly increased in response to the application of N as filter cake (50-100 %) enriched or not with yeast and EM compared to the application of N completely in mineral form. The promotion of these flowering characters was greatly accomplished by using yeast and/or EM with filter cake. Enriching filter cake with yeast and/or EM was more favourable than using filter cake alone or when yeast or EM_1 was applied alone. Using the filter cake at higher

percentages, namely 100% especially with both the used bio-compounds gave the maximal values rather than using the lower percentages.

Table 4. Effect of filter cake, EM and yeast application	on some vegetative growth characteristics of Manfalouty
pomegranate trees during 2013 and 2014 sease	ons.

Treatments	No. new shoots/ tree	Shoot length (cm)	Shoot thickness (cm)	No. of leaves/ shoot	Leaf area (cm) ²						
		First season: 2013									
100 % mineral N (896.09 g ammonium nitrate / tree). 100% filter cake (17.86 kg/ tree).	17.00h 18.00gh	36.00i 38.00h	0.33h 0.40g	17.00e 17.68e	6.11g 6.31g						
50 % mineral N (448 g ammonium nitrate / tree) + 50% filter cake (8.93 kg/ tree).	31.00b	51.50b	0.87b	22.44d	8.00ab						
100% filter cake + 0.2% EM (2.0 L/ ton).	28.00c	48.00c	0.81c	21.08de	7.67bc						
100% filter cake + 0.2 % yeast (2.0 kg/ ton).	25.00d	46.00d	0.71d	20.40de	7.33cd						
100% filter cake + 0.2 % EM + 0.2 % yeast.	33.00a	54.00a	0.93a	70.00a	8.31a						
50% filter cake + 0.2 % EM (2.00 L. /ton)	21.00f	41.90f	0.54e	56.00bc	6.74ef						
50% filter cake + 0.2% yeast (2.0 kg/ ton).	19.00g	39.90g	0.47f	54.00c	6.52fg						
50% filter cake + 0.2 % EM + 0.2 % yeast.	23.00e	44.00ĕ	0.59e	58.30b	7.00de						
			Second season:	2014							
100 % mineral N (896.09 g ammonium nitrate / tree).	16.00h	35.30i	0.32h	50.70h	6.30f						
100% filter cake (17.86 kg/ tree).	20.00g	39.60h	0.38g	52.60gh	6.18f						
50 % mineral N (448 g ammonium nitrate / tree) + 50% filter cake (8.93 kg/ tree).	33.00b	53.50b	0.88a	66.80b	8.19ab						
100% filter cake + 0.2% EM (2.0 L/ ton).	30.00c	50.00c	0.80b	63.00c	7.87bc						
100% filter cake + 0.2% yeast (2.0 kg/ton).	27.00d	48.10d	0.71c	60.90cd	7.54c						
100% filter cake + 0.2% EM + 0.2% veast.	36.00a	56.00a	0.92a	71.00a	8.51a						
50% filter cake + 0.2 % EM (2.00 L, /ton)	23.00f	44.00f	0.55e	57.00ef	6.95de						
50% filter cake + 0.2% yeast (2.0 kg/ ton).	21.00g	41.90g	0.48f	55.00fg	6.72e						
50% filter cake + 0.2 % EM + 0.2 % yeast.	25.00e	45.90e	0.63d	59.20de	7.19d						

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

Table 5. Effect of filter cake, EM and yeast application on some leaf chemical components of Manfalouty pomegranate trees during 2013 and 2014 seasons.

	Chlorophyll	Chlorophyll	Total	Total	N	р	K
Treatments	a (mg/g FW)	b (mg/g FW)	chlorophyll (mg/g FW)	carotenoids (mg/g FW)	(%)	(%)	(%)
			First season	: 2013			
100 % mineral N	1.90i	0.90h	2.80i	1.20h	1.57h	0.10g	1.11f
100 % filter cake	2.40h	1.20g	3.60h	2.03g	1.65gh	0.22f	0.16g
50% mineral N + 50% filter cake	5.50b	3.40a	8.90b	5.80b	2.14b	0.81ab	1.64a
100 % filter cake + EM	4.90c	3.00b	7.90c	5.20c	2.05bc	0.76bc	1.57ab
100 % filter cake + Yeast	4.30d	2.60c	6.90d	4.60d	1.97cd	0.66c	1.50b
100 % filter cake + EM +Yeast	6.23a	3.20ab	9.43a	6.50a	2.44a	0.88a	1.38cd
50 % filter cake + EM	3.40f	2.00e	5.40f	3.70e	1.81ef	0.43e	1.31d
50 % filter cake + Yeast	2.90g	1.60f	4.50g	3.20f	1.73fg	0.33e	1.22e
50 % filter cake + EM + Yeast	4.00e	2.30d	6.30e	4.30d	1.90de	0.55d	1.41c
			First season	: 2014			
100 % mineral N	2.00i	1.00i	3.00i	2.30g	1.52g	0.09g	1.08i
100 % filter cake	2.50h	1.30h	3.80h	2.80g	1.67f	0.21f	1.20h
50% mineral N + 50% filter cake	5.60b	3.50a	9.10b	5.90a	2.16b	0.80ab	1.69b
100 % filter cake + EM	5.00c	3.10c	8.10c	5.40b	2.07bc	0.75b	1.61c
100 % filter cake + Yeast	4.40d	2.70d	7.10d	4.70c	1.99cd	0.66c	1.54d
100 % filter cake + EM +Yeast	6.30a	3.30b	9.60a	5.60b	2.49a	0.87a	1.76a
50 % filter cake + EM	3.50f	2.10f	5.60f	3.80e	1.83e	0.44e	1.35f
50 % filter cake + Yeast	3.00g	1.70g	4.70g	3.30f	1.67f	0.36e	1.26g
50 % filter cake + EM + Yeast	4.10e	2.40e	6.50e	4.40d	1.91de	0.55d	1.43e

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

Using N as 100% filter cake alone was more superior than using N as 100% inorganic N in this regard. The maximum number of flowers/tree (341 and 348 flowers/tree) during both seasons, respectively were recorded on the trees received N as 100% filter cake + 0.2 % yeast + 0.2 % EM1 comparing with application of 100% mineral N (264 and 271). Sex ratio (male/perfect flowers) was significantly reduced with supplying the trees with N via 50 to 100% filter cake amended with yeast and/or EM, comparing with the application of N either as 100% filter cake or 100% mineral N. The lowest means of sex ratio were recorded on the trees that supplied with N as 100% filter cake + 0.2 % yeast + 0.2 % EM (0.78 and 0.78) to reach (3.00 and 2.82) in N as 100 % inorganic, in both seasons, respectively. The lowest values in all flowering traits except sex ratio were obtained by the trees fertilized with N as 100% mineral N. These results were true during the two seasons.

J. Plant Production, Mansoura Univ., Vol. 9(1), January, 2018

pointegi anate ti ces dui ing 20	010 and 2014 se	a30115.				
Treatments	Mg %	Ca %	Zn (ppm)	Fe (ppm)	Mn (ppm)	Cu (ppm)
			First se	eason: 2013		
100 % mineral N	0.42h	1.99f	50.10i	46.30i	52.90i	1.11g
100 % filter cake	0.46gh	2.11ef	54.10h	49.30h	58.57h	1.18fg
50% mineral N + 50% filter cake	0.81b	2.84a	84.10b	71.00b	85.90b	1.66ab
100 % filter cake + EM	0.75bc	2.71ab	80.00c	66.90c	80.00c	1.56bc
100 % filter cake + Yeast	0.69cd	2.59bc	75.30d	63.00d	75.60d	1.48cd
100 % filter cake + EM +Yeast	0.90a	2.63a-c	89.10a	74.90a	90.57a	1.75a
50 % filter cake + EM	0.59ef	2.33de	64.00f	57.00f	65.70f	1.33d-f
50 % filter cake + Yeast	0.52fg	2.22e	59.00g	53.50g	61.70g	1.26e-g
50 % filter cake + EM + Yeast	0.64de	2.45cd	70.00e	60.00e	70.90e	1.40de
			Second	season: 2014		
100 % mineral N	0.39g	1.59g	49.90i	45.90i	53.00i	1.13h
100 % filter cake	0.48f	2.10f	53.90h	50.00h	58.00h	1.20gh
50% mineral N + 50% filter cake	0.83b	2.85ab	83.80b	69.90b	76.67b	1.68ab
100 % filter cake + EM	0.76c	2.70bc	79.80c	67.00c	79.80c	1.59bc
100 % filter cake + Yeast	0.70d	2.58cd	74.40d	62.80d	75.30d	1.51cd
100 % filter cake + EM +Yeast	0.91a	2.97a	89.10a	74.50a	91.10a	1.78a
50 % filter cake + EM	0.60e	2.34e	63.90f	56.90f	65.80f	1.35ef
50 % filter cake + Yeast	0.53f	2.28ef	58.90g	53.40g	61.80g	1.29fg
50 % filter cake + EM + Yeast	0.64e	2.46de	69 90e	59 90e	71.00e	1 42de

Table 6. Effect of filter cake, EM and yeast application on some leaf chemical components of Manfalouty pomegranate trees during 2013 and 2014 seasons.

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

Table 7. Effect of filter cake, EM and yeast application on some flowering aspects of Manfalouty pomegranate trees during 2013 and 2014 seasons.

Eastilization tweatments	No. of flower/	No. Of	No. of male	Sex				
Fertilization treatments	shoot	flowers/tree	flowers/ tree	flower/tree	ratio			
		Firs	First season: 2013					
100 % mineral N	2.00g	264.0i	198.0a	66.00i	3.00a			
100 % filter cake	3.00f	271.0h	194.0b	77.00h	2.52b			
50% mineral N + 50% filter cake	7.00b	329.0b	155.0h	174.0b	0.89fg			
100 % filter cake + EM	7.00b	315.0c	162.0g	153.0c	1.06fg			
100 % filter cake + Yeast	7.00b	305.0d	166.0f	139.0d	1.19ef			
100 % filter cake + EM +Yeast	8.00a	341.0a	149.0i	192.0a	0.78g			
50 % filter cake + EM	5.00d	287.0f	183.0d	104.0f	1.76cd			
50 % filter cake + Yeast	4.00e	279.0g	279.0g 188.0c		2.07c			
50 % filter cake + EM + Yeast	6.00c	295.0e	174.0e	121.0e	1.44de			
		Seco	nd season: 2014	ļ				
100 % mineral N	2.00f	271.0h	200.0a	71.00i	2.82a			
100 % filter cake	3.00e	278.0g	196.0b	82.00h	2.39b			
50% mineral N + 50% filter cake	7.00b	336.0b	157.0h	179.0b	0.88gh			
100 % filter cake + EM	7.00b	322.0c	164.0g	158.0c	1.10fg			
100 % filter cake + Yeast	7.00b	312.0d	168.0f	144.0d	1.13f			
100 % filter cake + EM +Yeast	8.00a	348.0a	152.0i	196.00a	0.78h			
50 % filter cake + EM	5.00d	294.0e	186.0d	108.0f	1.72d			
50 % filter cake + Yeast	5.00d	286.0f	191.0c	95.00g	2.01c			
50 % filter cake + EM + Yeast	6.00c	335.3b	177.0e	125.1e	1.41e			

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

4- Yield and marketable fruits /tree:

It is obvious from data averaged in Table 8 that, fertilizing the trees with N via 50 to 100% filter cake with or without yeast and EM each at 0.2% significantly improved number of fruits and marketable fruits per tree, gross and marketable yields relative to the application of N completely via mineral N. Applying N as 100% filter cake was more favourable than using N in the mineral form. Number of splitted fruits was significantly depressed in response to subjecting the trees to N as 50 to 100% filter cake alone or in combination with yeast or EM relative to application of N as 100% mineral N. Number of sunburned

fruits per tree was significantly raised as a result of applying the present treatments over the control treatment (100% mineral N). This is reasonable due to the higher number of fruits borne on the treated trees with filter cake. The maximum marketable yield/ tree (60.2 and 62.2 kg/ tree) was recorded by the trees that received N as 100% filter cake enriched with yeast and EM at 0.2% for each during both seasons, respectively. The marketable yield of the trees treated with N as 100% mineral N reached 25.1 and 24.8 kg during 2013 and 2014 seasons, respectively. The increment percentage in the yield due to the previous

dominate treatment over the other ones reached 139.8 and 150.8 % during 2013 and 2014 seasons, respectively.

5- Physical and chemical characteristics of the fruits:

It is obvious from data in Tables 9, 10 and 11 that, generally supplying Manfalouty pomegranate with N as 50 to 100% filter cake alone or with yeast and EM, as well as using N as 50% filter cake + 50% mineral N were significantly more effective in enhancing fruit quality in terms of increasing fruit weight and dimensions, juice %, TSS %, reducing and total sugars % and total anthocyanins in the juice and fruit peels and in reducing fruit peel weight and thickness, total acidity % and total soluble tannins % relative to the application of N as 100%

mineral N. The promotion in fruit quality was significantly associated with increasing the percentages of filter cake from 50 to 100%. Using filter cake fertilized with yeast and/or EM was significantly preferable than using filter cake alone for improving fruit quality. Using N as 100% filter cake was greatly preferable than using N as 100% mineral N alone for improving fruit quality. The best results were obtained by supplying the trees with N as 100% filter cake + yeast + EM at 0.2% for each. Fruit promace % was significantly enhanced with all filter cake, yeast and EM treatments rather than using N in the mineral form or filter cake alone. These results were true during both seasons.

Table 8. Effect of filter cake, EM and yeast application on yield and yield components of Manfalouty pomegranate trees during 2013 and 2014 seasons.

¥	Total	Marketable	Splitted	Sun burned	Gross	Marketable			
Treatment	fruits	fruits	fruits	fruits	yield/ tree	yield/tree			
	no./tree	no./tree	no./tree	no./tree	(kg)	(kg)			
			First sease	on: 2013					
100 % mineral N	100.0i	81.00i	15.00a	4.00g	31.00i	25.10i			
100 % filter cake	104.0h	84.00h	14.00a	6.00f	33.90h	27.40h			
50% mineral N + 50% filter cake	142.0b	120.0b	5.00ef	17.00d	60.77b	51.60b			
100 % filter cake + EM	138.0c	110.0c	6.00e	22.00b	57.10c	45.50c			
100 % filter cake + Yeast	132.0d	101.0d	8.00d	23.00a	52.70d	40.40d			
100 % filter cake + EM + Yeast	149.0a	130.0a	4.00f	16.00d	69.00a	60.20a			
50 % filter cake + EM	120.0f	92.00f	11.00bc	17.00d	42.80f	32.80f			
50 % filter cake + Yeast	110.0g	88.00g	12.00b	10.00e	37.50g	30.00g			
50 % filter cake + EM + Yeast	126.0e	96.00e	10.00c	20.00c	47.90e	36.50e			
		126.0e 96.00e 10.00c 20.00c 47.90e 36.50e Second season: 2014							
100 % mineral N	98.00i	80.00i	16.00a	2.00g	30.40i	24.80i			
100 % filter cake	105.0h	85.00h	14.00b	6.00f	34.80h	28.10h			
50% mineral N + 50% filter cake	144.0b	120.0b	5.00h	19.00c	62.60b	52.20b			
100 % filter cake + EM	139.0c	110.0c	6.00g	23.00a	58.20c	46.10c			
100 % filter cake + Yeast	133.0d	102.0d	9.00f	22.00a	53.90d	41.30d			
100 % filter cake + EM + Yeast	155.0a	133.0a	4.00i	18.00cd	72.30a	62.20a			
50 % filter cake + EM	121.0f	93.00f	11.00d	17.00d	43.90f	31.90f			
50 % filter cake + Yeast	111.0g	88.00g	12.00c	11.00e	38.40g	30.40g			
50 % filter cake + EM + Yeast	128.0e	97.00e	10.00e	20.67b	49.30e	37.30e			

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

Table	9.	Effect	of	filter	cake,	EM	and	yeast	application	on	some	physical	characteristics	of	Manfalouty
		pomeg	grai	nate fr	uits du	ring	2013	and 20	14 seasons.						

Treatment	Fruit weight (g)	Fruit diameter (cm)	Fruit height (cm.)	Fruit peel weight (%)	Fruit peel thickness (cm)
]	First season: 2013	3	
100 % mineral N	310.0i	8.10f	7.40f	41.03a	0.84a
100 % filter cake	326.0h	8.20ef	7.51ef	39.00b	0.81ab
50% mineral N + 50% filter cake	430.0b	9.05ab	8.06ab	29.80gh	0.55fg
100 % filter cake + EM	414.0c	8.90a-c	7.97ab	31.00fg	0.60ef
100 % filter cake + Yeast	399.6d	8.74b-d	7.90bc	32.70ef	0.64de
100 % filter cake + EM +Yeast	462.9a	9.21a	8.16a	28.50h	0.51g
50 % filter cake + EM	357.0f	8.52с-е	7.66de	35.50cd	0.73c
50 % filter cake + Yeast	341.0g	8.41d-f	7.60de	37.00c	0.76bc
50 % filter cake + EM + Yeast	380.0e	8.63cd	7.76cd	34.00de	0.69cd
		Se	econd season: 20	14	
100 % mineral N	309.7i	8.07f	7.50f	41.00a	0.85a
100 % filter cake	331.0h	8.25ef	7.60ef	38.90b	0.82a
50% mineral N + 50% filter cake	435.0b	9.16ab	8.16ab	30.00f	0.59e
100 % filter cake + EM	419.0c	8.96bc	8.09b	30.90f	0.59e
100 % filter cake + Yeast	405.0d	8.81cd	8.00bc	32.60e	0.64de
100 % filter cake + EM +Yeast	468.0a	9.29a	8.27a	28.40g	0.50f
50 % filter cake + EM	363.0f	8.60d	7.71de	35.40g	0.72bc
50 % filter cake + Yeast	346.0g	8.49de	7.70de	36.90c	0.75b
50 % filter cake + EM + Yeast	384.9e	8.70cd	7.86cd	33.90de	0.68cd

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability.

Table	10.	Effect	of	filter	cake,	EM	and	yeast	application	on	some	physical	and	chemical	characteristics	of
		Manfa	lou	tv por	negrar	nate f	ruits	during	⁷ 2013 and 20)14	season	s.				

Treatment	Juice (%)	Fruit promace (%)	T.S.S. (%)	Total sugars (%)	Reducing sugars (%)				
	X 7	First season: 2013							
100 % mineral N	36.00h	22.90f	13.50g	11.00e	10.40f				
100 % filter cake	37.30gh	23.70e	14.00fg	11.30de	10.70ef				
50% mineral N + $50%$ filter cake	45.00b	25.20ab	17.50a	13.30a	12.40a				
100 % filter cake + EM	43.60bc	25.40a	16.70b	13.00ab	12.10ab				
100 % filter cake + Yeast	42.50cd	24.80a-c	16.20bc	12.70b	11.80bc				
100 % filter cake + EM + Yeast	47.50a	24.00de	18.10a	13.40a	12.60a				
50 % filter cake + EM	40.10ef	24.40cd	15.20de	12.00c	11.30cd				
50 % filter cake + Yeast	39.00fg	24.00de	14.60ef	11.60d	11.00de				
50 % filter cake + EM + Yeast	41.30de	24.70bc	15.60cd	12.30c	11.50cd				
		Second season: 2014							
100 % mineral N	36.90h	22.10e	14.00g	10.90f	10.50e				
100 % filter cake	38.40gh	22.70d	14.40fg	11.40e	10.80e				
50% mineral N + 50% filter cake	46.00b	24.00ab	17.306	13.40a	12.50a				
100 % filter cake + EM	44.70bc	24.40a	17.00b	12.90b	12.20ab				
100 % filter cake + Yeast	43.50cd	23.90ab	16.30c	12.80b	11.90bc				
100 % filter cake + EM + Yeast	48.50a	23.10cd	17.90a	13.50a	12.70a				
50 % filter cake + EM	41.10ef	23.50bc	15.20de	11.90d	11.40cd				
50 % filter cake + Yeast	40.00fg	23.10cd	14.80ef	11.70de	10.90de				
50 % filter cake + EM + Yeast	42.30de	23.80b	15.60d	12.40c	11.60c				

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability. ----... e a

Table 1	l. Effect of filter	cake, EM and	yeast application	on some cher	mical characteristics	of the fruit	juice of
	Manfalouty po	omegranate tree	s during 2013 and	2014 seasons.			

Treatment	Non. Reducing sugars (%)	Titratable acidity (%)	Total soluble tannins (%)	Total anthocyanin (mg/100 g FW) in the juice	Total anthocyanins (mg/ 100 g FW)			
			First season: 2013					
100 % mineral N	0.60d	1.46a	1.15a	28.90i	40.00f			
100 % filter cake	0.60d	1.44ab	1.09a	29.90h	40.90f			
50% mineral N + 50% filter cake	0.90a	1.31fg	0.69f	36.10b	45.60ab			
100 % filter cake + EM	0.90a	1.34e-g	0.75ef	35.00c	44.50b			
100 % filter cake + Yeast	0.90a	1.36d-f	0.82de	34.00d	43.70c			
100 % filter cake + EM + Yeast	0.80b	1.29g	0.91c	38.00a	46.60a			
50 % filter cake + EM	0.70c	1.40b-d	0.95bc	32.00f	42.20d			
50 % filter cake + Yeast	0.60d	1.42a-c	1.00b	31.00g	41.60e			
50 % filter cake + EM + Yeast	0.80b	1.38c-e	0.89cd	33.00e	43.00c			
			Second sea	ason: 2014				
100 % mineral N	0.40f	1.47a	1.11a	29.00i	40.80g			
100 % filter cake	0.60d	1.45ab	1.04b	30.00h	41.70f			
50% mineral N + 50% filter cake	0.90a	1.32ef	0.64g	36.00b	46.40b			
100 % filter cake + EM	0.70c	1.35d-f	0.70f	34.90c	44.30cd			
100 % filter cake + Yeast	0.90a	1.37c-e	0.77e	33.90d	44.60c			
100 % filter cake + EM + Yeast	0.80b	1.30f	0.86d	37.80a	47.40a			
50 % filter cake + EM	0.50e	1.41a-d	0.90cd	31.80f	42.90e			
50 % filter cake + Yeast	0.80b	1.43a-c	0.95c	30.90g	42.40e			
50 % filter cake + EM + Yeast	0.77b	1.39b-d	0.84d	32.90ĕ	43.60d			

- Means within the same column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5 % level of probability. 6- Economic study:

6- Economic study: The economic consideration comparative study of Manfaloty Pomegranate cultivar in 2013 and 2014 seasons that shown in Table 12 observed that, the trees which treated by 100% filter cake + yeast + EM led to get the highest fruit yield which had the highest net return

(51309.4 EP). On the other hand, control treatment gave the lowest net return (18419.15 EP) in both studied seasons, so we can recommended with fertilizing pomegranate trees with filter cake (100%) + yeast + EM that leading to get higher profit comparing with other treatments.

Table 12. Economic evaluation of pomegranate fruits production of Manfaloty cultivar fertilizing the trees with filter cake enriched with yeast and/or EM and mineral fertilizers (N).

	Average of marketable yield kg/Fed		Total Cost				-	
Treatments		Cross income /treatment (EPG/Fed)	Fixed Cost+ farm compost	Cost of filter cake	Cost of yeast	Cost Of EM	Total Cost (EPG)	Average net return (EPG)
100 % mineral N	6536.9	22879.15	4460				4460	18419.15
100 % filter cake	7270.5	25446.75	4460	270			4730	20716.75
50% mineral N + 50% filter cake	13597.8	47592.3	4460	135			4595	42997.3
100 % filter cake + EM	11999.6	41998.6	4460	270		54	4784	37214.6
100 % filter cake + Yeast	10702.7	37459.45	4460	270	27		4757	32702.45
100 % filter cake + EM +Yeast	16034.4	56120.4	4460	270	27	54	4811	51309.4
50 % filter cake + EM	8475.7	29664.95	4460	135		54	4649	25015.95
50 % filter cake + Yeast	7912.4	27693.4	4460	135	27		4622	23071.4
50 % filter cake + EM + Yeast	9667.8	33837.3	4460	135	27	54	4676	29161.3

DISCUSSION

The benefits of using EM and filter cake on enhancing soil fertility, may be due to the availability of nutrients and the secretion of GA3, IAA and antibiotics surely reflected on enhancing yield and fruit quality (Dee et al., 2002 and Kannayian, 2002). Using EM has beneficial effect in inoculating of different cultures of microorganisms into soil, where they shift the microbiological equilibrium and create an environment that is favourable to the growth and health of plants. It is capable for enhancing N fixation, organic matter, nutrient and water uptake and root development, as well as for reducing soil pH that is responsible for increasing the availability of different nutrients (Higa, 1991 and Joo et al. 1999). Yeast contains vitamin B (thiamin), B₆ (pyridoxine) and glycine (Abou-Zaid, 1984). Also, it is very beneficial and essential for the synthesis of aminoleulinic acid (AA) and for the formation of protoporophrin, the precursor of chlorophyll. It aids in activating photosynthesis process through enhancing the release of carbon dioxide (NRP, 1977 and Barnett et al., 1990). The application of yeast to improve growth, vine nutritional status, yield, as well as physical and chemical properties of citrus is getting much importance.

Previous studied showed that using yeast was very effective in enhancing growth and flowering aspects, tree nutritional status, yield and fruit quality in different fruit crop species (Hosam El-Deen *et al.*, 2001; Ahmed, 2001; Moustaffa and El-Hosseiny, 2001; Mostafa, 2004, Badawi Sabah, 2005, Mouftah, 2007; Mohamed *et al.*, 2008; Oraby, 2013 and Abdalla, 2014) and EM (Abd- Rabou, 2006; Mofeed, 2009; Badran and Mohamed, 2009; Ahmed- Samah, 2011; Roshdy *et al.*, 2011; Ibrahim, 2012, Hassan- Huda, 2014, Abd El-Reheem-Sahar, 2015 and Abdel–Aziz, 2015).

CONCLUSION

For promoting remarkable yield, fruit quality and higher profit of Manfalouty pomegranate trees grown under sandy soil condition, simultaneously with controlling fruit splitting, it is suggested to use filter cake at 100% of the recommended N dose (300 g/tree/year) via (17.86 kg/tree) plus 0.2% of yeast and 2 L from EM₁ (2 kg from both yeast and EM/ ton filter cake), four times concerning from the first week of Jan. with two months interval.

REFERENCES

- Abdalla, A.A. (2014). Attempts for alternating the adverse effects of soil and irrigation water salinity on fruiting of Valencia orange. Ph. D. Thesis Fac. Agric., Al-Azhar Univ., Assuit branch, Egypt.
- Abdel-Aziz, M.H.S. (2015). Using some organic manure enriched with EM₁ to reduce the amount of mineral N fertilizer and improve productivity of Kaddota fig trees. M. Sc. Thesis, Fac. Agric., Minia Univ., Egypt.
- Abd- El-Reheem, Sahar, A. (2015). Trials for improving productivity of the trees and reducing nitrite pollution in the fruits of Sukary mango trees. M. Sc. Thesis, Fac., Agric. Minia Univ., Egypt.

- Abd -Rabou, F.A. (2006). Effect of microbene, phosphorene and effective microorganisms (EM) as biostimulants on growth of avocado and mango seedlings. Egypt. J. Appl. Sci., 21 (6B): 673-693.
- Abou-Zaid, M. (1984). Biochemical studies on fodder yeast. Ph.D. Thesis, Fac., Agric., Cairo Univ., Egypt.
- Ahmed, A.M. (2001). Studies for controlling malformation and improving yield and fruit quality of Hindy Bisinnara mangoes by using active dry yeast, ascorbic acid and Sulphur. Minia J. Agric Res.& Develop. 21 (2): 219-233.
- Ahmed, F.F and Morsy, M.H. (1999). A new method for measuring leaf area in different fruit species. Minia. J. Agrie.Rec. & Dev., 19: 97 - 105.
- Ahmed, Samah, O.O. (2011). Effect of yeast and effective microorganisms (EM1) application on yield and fruit characteristics of Bartamuda date palm under Aswan climatic conditions. M. Sc. Thesis, Fac. Agric., Assuit Univ., Egypt.
- AOAC, (1995). Official Methods of Analysis (AOAC), 12th Ed., Published by AOAC., Washington DC, USA pp. 490 - 510.
- Badawi-Sabah, M. (2005). Histological effects of yeast application on fruit characteristics and fruit growth stages of Balady mandarin cultivar. Ph. D. Thesis, Fac. Agric., Assuit. Univ., Egypt.
- Badran, M.A.F. and Y.A. Mohamed (2009). Response of Williams banana plants to application of EM1 and yeast. Egypt, J. Agric. Res., 87(1): 129-140.
- Barnett, J.A., R.W. Payne and D. Yarrow (1990). Yeast characteristics and identification. Cambridge Univ. Press, London, pp. 999.
- Cottenie, A.; Verloo, M.; Kiekens, L.; velgle, G. and Amerlynuck, R. (1982). Chemical Analysis of Plant and Soil. 34-51. Laboratory of Analytical and Agroch. State Univ., Belgium, Gent.
- Dee, B.M.; Haynes, R.J. and Meyer, J.H. (2002). Sugar mill wastes can be important soil amendments. Proc. S. Afr. Sug. Technol. Ass., 76: 51-60.
- Duncan, D. B. (1955). Multiple range and multiple F. Tests. Biometrics,11: 1-42.
- Fulcki, T. and Francis, F.J. (1968). Quantitative methods for anthocyanin 1- Extraction and determination for total anthocyanins, J. Food Sci., 33: 72-77.
- Hassan, Huda, M.I. (2014). Impact of effective microorganisms and amino acids enriched with some nutrients on growth and fruiting of Valencia orange trees. Ph. D. Thesis, Fac. Agric., Minia Univ., Egypt.
- Heady, E.O. and J.L. Dillon (1961). Agricultural Production Functions. Iowa State University Press. Iowa State University Press, Iowa, U.S.A.
- Higa, T. (1991). Effective microorganisms, a biotechnology for mankind. Pp. 8-14. 1st Inter. Conf. of Kyusei Nature Farming U. S. Dept. Agric., Washington, DC, USA.
- Hiscox, A. and Isralstam, B. (1979). A method for the extraction' of chlorophyll from leaf tissue without maceration. Can. J. Bot., 57: 1332-1334.
- Hosam El-Deen, A. S.; El- Shobaky, M. A. and Tourky, M. N. F. (2001): Effect of yeast on growth, fruit quality and storage life of Williams banana. J. Agric. Sci. Mansoura Univ., 26(7): 4483-4490.

- Ibrahim, W. M. A. (2012). Behaviour of Taimour mango trees to inorganic and organic fertilization and application of EM. Ph. D. Thesis, Fac. Agric., Minia Univ., Egypt.
- Joo, Y. H.L.; Senanyake, Y.D. and Sangakkara, U.R. (1999). Effect of EM on the production of crop and waste treatment in Korea. Fifth International Conference on Kyusei Nature Farming, Bangkok, Thailand, 23-26 October: 151-156.
- Kannaiyan, S. (2002). Biotechnology of Biofertilizers. Alpha Sci. Inter. Ltd, B.P. Bpx 4067, Pang Boome R. 68, U.K. pp. 1-275.
- Lane, J. H. and Eynon, L. (1965). Determination of reducing sugars by means of Fehlings solution with methylene Nue as indicator, AOAC, Washington DC, USA pp 490 - 510.
- Mofeed, A.S. (2009). Effect of organic farming on yield, fruit and soil quality of olive. Ph.D. Thesis, Fac. Agric., Ain Shams Univ., Egypt.
- Mohamed, M.A.; Gobara, A. A.; Ragab, M. A. and Mouftah, R. T. (2008). Response of Taimour and Zebda mango trees to application of organic and biofertilization along with seaweed extract. 1st Inter. Conf. on Environ. Studies Res. 7-9 April, Minufia Univ., Sadat Branch, pp. 28-38.
- Mostafa, E.A. (2004). Effect of spraying with ascorbic acid, vitamin B and active dry yeast on growth, flowering, leaf mineral status, yield and fruit quality of Grand Naine banana plants. Annals Agric. Sci., 49(2): 643-659.
- Moustaffa, M. F. and El-Hosseiny, A. A. (2001). Influence of spraying active dry yeast solution on growth, yield, fruit quality and leaf N and P content of Washington navel orange trees. J. Agric. SAci., Mansoura Univ., 26 (10): 6293-6305.

- Mouftah, R.T. (2007). Physiological studies on biofertilization of mango trees cvs. Taimour and Zebda. Ph.D Dissertation. Fac. Agric., Minia Univ., Egypt.
- NRP (1977). Nutrient Requirements of Domestic Animals No.1, 7th Rev. Ed., National Academy of Sci., Washington,, D.C., U.S.A.
- Oraby, A.A.F. (2013). Partial replacement of inorganic nitrogen fertilizer by spraying some vitamins, yeast and seaweed extract in Ewaise mango orchard under Upper Egypt conditions. M.Sc. Thesis, Fac. Agric., Minai Univ., Egypt.
- Peach, K. and Tracey, I.M.V. (1968). Modern Methods of Plant Analysis, Vol.11:36-38
- Roshdy, Kh. A.; Abdalla, B. M. and El-Kafrawy, A. A. (2011). Effect of EM on productivity of Taimour mango trees. Egypt. J. Appl. Sci., 26 (3):128-139.
- Sheets, M.S; Dubois, M.I. and Williams, J.G. (2014). The pomegranate. Hort. Sci. Dept., Florida Cooperative Extension Services, Institute of Food and Agric. Sci. Univ., Florida 8-15.
- Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods. 6th The Iowa St. Univ., Press. Amer., Iowa. U.S. A. pp: 363-372.
- Summer, M.I. (1985). Diagnosis and Recommendation Integrated System (DKIS) as a Guide to Orchard Fertilization Ron. Abst., 55 (8): 7502.
- Von-Wettstein, D.V. (1957). Chlroophyll- Lethale under sub-mikroshopische formilkechrel der plastiden cell, prl Trop. Res. Amer. Soc. Hort. Sci. 20: 427 – 433.

-- ربي ---- مبـ-قسم بحوث الزيتون وفاكهة المناطق شبه جافة معهد بحوث البساتين- مركز البحوث الزراعية- الجيزة

أجريت هذه الدراسة خلال موسمي 2013 ، 2014 على أشجار الرمان المنفلوطي البالغة من العمر 12 عاما المنزرعة في مزرعة خلصه تقع في منطقه عرب العوامر في مدينة ابنوب بمحافظة أسيوط – مصر وتروى بنظام الرى بالتنقيط ومنزرعة على مسافلت 4 × 4م بين الأشجار، وكان الهدف اختبار تأثير استخدام طينة المرشحات المزودة بالخميرة ومركب الكائنات الحية الدقيقة الفعالة (EM) كبديل جزئي للأسمدة النتروجينية المعدنية على صفات النمو والإزهار والحالة الغذائية للشجرة وكمية المحصول والنسبة المئوية لتقلق الثمار في المشعار الرمان المنفلوطي (EM) نصو والإزهار والحالة الغذائية للشجرة وكمية المحصول والنسبة المئوية لتشقق الثمار وجودة الثمار في أشجار الرمان المنفلوطي (EM) من الكامية في التربة الرملية. أوضحت النتائج المتحصل عليها أن تسميد الأشجار بسماد طينة أشجار الرمان المنفلوطي (Lo مان المنفلوطي (EM) من الكمية الموصى بها للشجرة من النتروجين أما بمفردها أو مع الخميرة ومركب الكائنات الحية الدقيقة الفعالة (EM) المرشحات بنسبة 50 إلى 100% من الكمية الموصى بها للشجرة من النتروجين أما مفردها أو مع الخميرة ومركب الكائنات الحية الدقيقة الفعالة (EM) بترميز (EM) بتركيز 2.0% كان مؤرا جدا في تحسين جميع صفات النمو الخضري ومحتوى الأوراق من الصبغات، النتروجين، الفوسفور، الموسيوم، الكانسيوم، الزنك، الحديد، المنجيز والنحاس وكذلك عدد الأزهار على الشجرة، عدد الأزهار الختي مكري ولي أما منور ول باستخدام النيتروجين في الموسور، الموسيوم، الكانسيوم، الرائك، الحديد، المنجيز والنحاس وكذلك عدد الأزهار على الشجرة، عدد الأزهار المتنتوة/ أوراق من الصبغات، النتروجين، الفوسفور، الموتلي المعروم، المانسيوم، المانيوم، المانيوم الحديك، المغوية لوزن وسمك القشرة، النسبة المئوية للحمول النيزوجين في المولي الختي، كمية المحصول الولان المودن المولي المودين والتنيزوجين موليوجين والتنيزوجين مولي أوراق من الموز مائز مع المودي، المتور و المودي المودين المودية المودين وسمك مودين في المودين في المودي في المودي ومركم الكيت الحيول واليون المودي في مزر ما المونكرة، ومركم الكنت الحية الموسون و ولالمان وكذلك مودين في المودين المودين في الموري ومرك المودين المودين المودي ووجودة المودي ومرك مودين في الصورة المودين الوسون ووجودة المودي وردي ومك للنتروو ووبك في الفرر ووري وماك مودي المودي ووبا المودي وور

الكلمات الدالة: طينة المرشحات- الخميرة- مركب الكاننات الحية الدقيقة الفعالة- أشجار الرمان المنفلوطي - تشقق الثمار – خصائص الجودة للثمار.